Java 并发之 AQS 详解 Thread 详解 Thread 详解

本文由 简悦 SimpRead 转码, 原文地址 https://www.cnblogs.com/waterystone/p/4920797.html

一、概述

  谈到并发,不得不谈 ReentrantLock;而谈到 ReentrantLock,不得不谈 AbstractQueuedSynchronizer(AQS)!

  类如其名,抽象的队列式的同步器,AQS 定义了一套多线程访问共享资源的同步器框架,许多同步类实现都依赖于它,如常用的 ReentrantLock/Semaphore/CountDownLatch…。

  以下是本文的目录大纲:

    1. 概述
    2. 框架
    3. 源码详解
    4. 简单应用

  若有不正之处,请谅解和批评指正,不胜感激。

  请尊重作者劳动成果,转载请标明原文链接:http://www.cnblogs.com/waterystone/p/4920797.html

  手机版可访问:https://mp.weixin.qq.com/s/eyZyzk8ZzjwzZYN4a4H5YA  

二、框架

  它维护了一个 volatile int state(代表共享资源)和一个 FIFO 线程等待队列(多线程争用资源被阻塞时会进入此队列)。这里 volatile 是核心关键词,具体 volatile 的语义,在此不述。state 的访问方式有三种:

  • getState()
  • setState()
  • compareAndSetState()

  AQS 定义两种资源共享方式:Exclusive(独占,只有一个线程能执行,如 ReentrantLock)和 Share(共享,多个线程可同时执行,如 Semaphore/CountDownLatch)。

  不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队 / 唤醒出队等),AQS 已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:

  • isHeldExclusively():该线程是否正在独占资源。只有用到 condition 才需要去实现它。
  • tryAcquire(int):独占方式。尝试获取资源,成功则返回 true,失败则返回 false。
  • tryRelease(int):独占方式。尝试释放资源,成功则返回 true,失败则返回 false。
  • tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0 表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
  • tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回 true,否则返回 false。

  以 ReentrantLock 为例,state 初始化为 0,表示未锁定状态。A 线程 lock() 时,会调用 tryAcquire() 独占该锁并将 state+1。此后,其他线程再 tryAcquire() 时就会失败,直到 A 线程 unlock() 到 state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A 线程自己是可以重复获取此锁的(state 会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证 state 是能回到零态的。

  再以 CountDownLatch 以例,任务分为 N 个子线程去执行,state 也初始化为 N(注意 N 要与线程个数一致)。这 N 个子线程是并行执行的,每个子线程执行完后 countDown()一次,state 会 CAS 减 1。等到所有子线程都执行完后 (即 state=0),会 unpark() 主调用线程,然后主调用线程就会从 await()函数返回,继续后余动作。

  一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现 tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared 中的一种即可。但 AQS 也支持自定义同步器同时实现独占和共享两种方式,如 ReentrantReadWriteLock。

三、源码详解

  本节开始讲解 AQS 的源码实现。依照 acquire-release、acquireShared-releaseShared 的次序来。

3.1 acquire(int)

  此方法是独占模式下线程获取共享资源的顶层入口。如果获取到资源,线程直接返回,否则进入等待队列,直到获取到资源为止,且整个过程忽略中断的影响。这也正是 lock() 的语义,当然不仅仅只限于 lock()。获取到资源后,线程就可以去执行其临界区代码了。下面是 acquire() 的源码:

1 public final void acquire(int arg) {
2     if (!tryAcquire(arg) &&
3         acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
4         selfInterrupt();
5 }

  函数流程如下:

    1. tryAcquire() 尝试直接去获取资源,如果成功则直接返回;
    2. addWaiter() 将该线程加入等待队列的尾部,并标记为独占模式;
    3. acquireQueued() 使线程在等待队列中获取资源,一直获取到资源后才返回。如果在整个等待过程中被中断过,则返回 true,否则返回 false。
    4. 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断 selfInterrupt(),将中断补上。

  这时单凭这 4 个抽象的函数来看流程还有点朦胧,不要紧,看完接下来的分析后,你就会明白了。就像《大话西游》里唐僧说的:等你明白了舍生取义的道理,你自然会回来和我唱这首歌的。

3.1.1 tryAcquire(int)

  此方法尝试去获取独占资源。如果获取成功,则直接返回 true,否则直接返回 false。这也正是 tryLock() 的语义,还是那句话,当然不仅仅只限于 tryLock()。如下是 tryAcquire() 的源码:

1     protected boolean tryAcquire(int arg) {
2         throw new UnsupportedOperationException();
3     }

  什么?直接 throw 异常?说好的功能呢?好吧,还记得概述里讲的 AQS 只是一个框架,具体资源的获取 / 释放方式交由自定义同步器去实现吗?就是这里了!!!AQS 这里只定义了一个接口,具体资源的获取交由自定义同步器去实现了(通过 state 的 get/set/CAS)!!!至于能不能重入,能不能加塞,那就看具体的自定义同步器怎么去设计了!!!当然,自定义同步器在进行资源访问时要考虑线程安全的影响。

  这里之所以没有定义成 abstract,是因为独占模式下只用实现 tryAcquire-tryRelease,而共享模式下只用实现 tryAcquireShared-tryReleaseShared。如果都定义成 abstract,那么每个模式也要去实现另一模式下的接口。说到底,Doug Lea 还是站在咱们开发者的角度,尽量减少不必要的工作量。

3.1.2 addWaiter(Node)

  此方法用于将当前线程加入到等待队列的队尾,并返回当前线程所在的结点。还是上源码吧:

 1 private Node addWaiter(Node mode) {
 2     //以给定模式构造结点。mode有两种:EXCLUSIVE(独占)和SHARED(共享)
 3     Node node = new Node(Thread.currentThread(), mode);
 4     
 5     //尝试快速方式直接放到队尾。
 6     Node pred = tail;
 7     if (pred != null) {
 8         node.prev = pred;
 9         if (compareAndSetTail(pred, node)) {
10             pred.next = node;
11             return node;
12         }
13     }
14     
15     //上一步失败则通过enq入队。
16     enq(node);
17     return node;
18 }

不用再说了,直接看注释吧。这里我们说下 Node。Node 结点是对每一个访问同步代码的线程的封装,其包含了需要同步的线程本身以及线程的状态,如是否被阻塞,是否等待唤醒,是否已经被取消等。变量 waitStatus 则表示当前被封装成 Node 结点的等待状态,共有 4 种取值 CANCELLED、SIGNAL、CONDITION、PROPAGATE。

  • CANCELLED:值为 1,在同步队列中等待的线程等待超时或被中断,需要从同步队列中取消该 Node 的结点,其结点的 waitStatus 为 CANCELLED,即结束状态,进入该状态后的结点将不会再变化。

  • SIGNAL:值为 - 1,被标识为该等待唤醒状态的后继结点,当其前继结点的线程释放了同步锁或被取消,将会通知该后继结点的线程执行。说白了,就是处于唤醒状态,只要前继结点释放锁,就会通知标识为 SIGNAL 状态的后继结点的线程执行。

  • CONDITION:值为 - 2,与 Condition 相关,该标识的结点处于等待队列中,结点的线程等待在 Condition 上,当其他线程调用了 Condition 的 signal() 方法后,CONDITION 状态的结点将从等待队列转移到同步队列中,等待获取同步锁。

  • PROPAGATE:值为 - 3,与共享模式相关,在共享模式中,该状态标识结点的线程处于可运行状态。

  • 0 状态:值为 0,代表初始化状态。

AQS 在判断状态时,通过用 waitStatus>0 表示取消状态,而 waitStatus<0 表示有效状态。

3.1.2.1 enq(Node)

  此方法用于将 node 加入队尾。源码如下:

 1 private Node enq(final Node node) {
 2     //CAS"自旋",直到成功加入队尾
 3     for (;;) {
 4         Node t = tail;
 5         if (t == null) { // 队列为空,创建一个空的标志结点作为head结点,并将tail也指向它。
 6             if (compareAndSetHead(new Node()))
 7                 tail = head;
 8         } else {//正常流程,放入队尾
 9             node.prev = t;
10             if (compareAndSetTail(t, node)) {
11                 t.next = node;
12                 return t;
13             }
14         }
15     }
16 }

如果你看过 AtomicInteger.getAndIncrement() 函数源码,那么相信你一眼便看出这段代码的精华。CAS 自旋 volatile 变量,是一种很经典的用法。还不太了解的,自己去百度一下吧。

3.1.3 acquireQueued(Node, int)

  OK,通过 tryAcquire() 和 addWaiter(),该线程获取资源失败,已经被放入等待队列尾部了。聪明的你立刻应该能想到该线程下一部该干什么了吧:进入等待状态休息,直到其他线程彻底释放资源后唤醒自己,自己再拿到资源,然后就可以去干自己想干的事了。没错,就是这样!是不是跟医院排队拿号有点相似~~acquireQueued() 就是干这件事:在等待队列中排队拿号(中间没其它事干可以休息),直到拿到号后再返回。这个函数非常关键,还是上源码吧:

 1 final boolean acquireQueued(final Node node, int arg) {
 2     boolean failed = true;//标记是否成功拿到资源
 3     try {
 4         boolean interrupted = false;//标记等待过程中是否被中断过
 5         
 6         //又是一个“自旋”!
 7         for (;;) {
 8             final Node p = node.predecessor();//拿到前驱
 9             //如果前驱是head,即该结点已成老二,那么便有资格去尝试获取资源(可能是老大释放完资源唤醒自己的,当然也可能被interrupt了)。
10             if (p == head && tryAcquire(arg)) {
11                 setHead(node);//拿到资源后,将head指向该结点。所以head所指的标杆结点,就是当前获取到资源的那个结点或null。
12                 p.next = null; // setHead中node.prev已置为null,此处再将head.next置为null,就是为了方便GC回收以前的head结点。也就意味着之前拿完资源的结点出队了!
13                 failed = false;
14                 return interrupted;//返回等待过程中是否被中断过
15             }
16             
17             //如果自己可以休息了,就进入waiting状态,直到被unpark()
18             if (shouldParkAfterFailedAcquire(p, node) &&
19                 parkAndCheckInterrupt())
20                 interrupted = true;//如果等待过程中被中断过,哪怕只有那么一次,就将interrupted标记为true
21         }
22     } finally {
23         if (failed)
24             cancelAcquire(node);
25     }
26 }

到这里了,我们先不急着总结 acquireQueued() 的函数流程,先看看 shouldParkAfterFailedAcquire() 和 parkAndCheckInterrupt() 具体干些什么。

3.1.3.1 shouldParkAfterFailedAcquire(Node, Node)

  此方法主要用于检查状态,看看自己是否真的可以去休息了(进入 waiting 状态,如果线程状态转换不熟,可以参考本人上一篇写的 Thread 详解),万一队列前边的线程都放弃了只是瞎站着,那也说不定,对吧!

 1 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
 2     int ws = pred.waitStatus;//拿到前驱的状态
 3     if (ws == Node.SIGNAL)
 4         //如果已经告诉前驱拿完号后通知自己一下,那就可以安心休息了
 5         return true;
 6     if (ws > 0) {
 7         /*
 8          * 如果前驱放弃了,那就一直往前找,直到找到最近一个正常等待的状态,并排在它的后边。
 9          * 注意:那些放弃的结点,由于被自己“加塞”到它们前边,它们相当于形成一个无引用链,稍后就会被保安大叔赶走了(GC回收)!
10          */
11         do {
12             node.prev = pred = pred.prev;
13         } while (pred.waitStatus > 0);
14         pred.next = node;
15     } else {
16          //如果前驱正常,那就把前驱的状态设置成SIGNAL,告诉它拿完号后通知自己一下。有可能失败,人家说不定刚刚释放完呢!
17         compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
18     }
19     return false;
20 }

整个流程中,如果前驱结点的状态不是 SIGNAL,那么自己就不能安心去休息,需要去找个安心的休息点,同时可以再尝试下看有没有机会轮到自己拿号。

3.1.3.2 parkAndCheckInterrupt()

  如果线程找好安全休息点后,那就可以安心去休息了。此方法就是让线程去休息,真正进入等待状态。

1 private final boolean parkAndCheckInterrupt() {
2     LockSupport.park(this);//调用park()使线程进入waiting状态
3     return Thread.interrupted();//如果被唤醒,查看自己是不是被中断的。
4 }

  park() 会让当前线程进入 waiting 状态。在此状态下,有两种途径可以唤醒该线程:1)被 unpark();2)被 interrupt()。(再说一句,如果线程状态转换不熟,可以参考本人写的 Thread 详解)。需要注意的是,Thread.interrupted() 会清除当前线程的中断标记位。

3.1.3.3 小结

  OK,看了 shouldParkAfterFailedAcquire() 和 parkAndCheckInterrupt(),现在让我们再回到 acquireQueued(),总结下该函数的具体流程:

  1. 结点进入队尾后,检查状态,找到安全休息点;
  2. 调用 park() 进入 waiting 状态,等待 unpark() 或 interrupt() 唤醒自己;
  3. 被唤醒后,看自己是不是有资格能拿到号。如果拿到,head 指向当前结点,并返回从入队到拿到号的整个过程中是否被中断过;如果没拿到,继续流程 1。

3.1.4 小结

  OKOK,acquireQueued() 分析完之后,我们接下来再回到 acquire()!再贴上它的源码吧:

1 public final void acquire(int arg) {
2     if (!tryAcquire(arg) &&
3         acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
4         selfInterrupt();
5 }

再来总结下它的流程吧:

  1. 调用自定义同步器的 tryAcquire() 尝试直接去获取资源,如果成功则直接返回;
  2. 没成功,则 addWaiter() 将该线程加入等待队列的尾部,并标记为独占模式;
  3. acquireQueued() 使线程在等待队列中休息,有机会时(轮到自己,会被 unpark())会去尝试获取资源。获取到资源后才返回。如果在整个等待过程中被中断过,则返回 true,否则返回 false。
  4. 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断 selfInterrupt(),将中断补上。

由于此函数是重中之重,我再用流程图总结一下:

至此,acquire() 的流程终于算是告一段落了。这也就是 ReentrantLock.lock() 的流程,不信你去看其 lock() 源码吧,整个函数就是一条 acquire(1)!!!

3.2 release(int)

  上一小节已经把 acquire() 说完了,这一小节就来讲讲它的反操作 release() 吧。此方法是独占模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放了(即 state=0), 它会唤醒等待队列里的其他线程来获取资源。这也正是 unlock() 的语义,当然不仅仅只限于 unlock()。下面是 release() 的源码:

1 public final boolean release(int arg) {
2     if (tryRelease(arg)) {
3         Node h = head;//找到头结点
4         if (h != null && h.waitStatus != 0)
5             unparkSuccessor(h);//唤醒等待队列里的下一个线程
6         return true;
7     }
8     return false;
9 }

  逻辑并不复杂。它调用 tryRelease() 来释放资源。有一点需要注意的是,它是根据 tryRelease() 的返回值来判断该线程是否已经完成释放掉资源了!所以自定义同步器在设计 tryRelease() 的时候要明确这一点!!

3.2.1 tryRelease(int)

  此方法尝试去释放指定量的资源。下面是 tryRelease() 的源码:

1 protected boolean tryRelease(int arg) {
2     throw new UnsupportedOperationException();
3 }

  跟 tryAcquire() 一样,这个方法是需要独占模式的自定义同步器去实现的。正常来说,tryRelease() 都会成功的,因为这是独占模式,该线程来释放资源,那么它肯定已经拿到独占资源了,直接减掉相应量的资源即可 (state-=arg),也不需要考虑线程安全的问题。但要注意它的返回值,上面已经提到了,release() 是根据 tryRelease() 的返回值来判断该线程是否已经完成释放掉资源了!所以自义定同步器在实现时,如果已经彻底释放资源 (state=0),要返回 true,否则返回 false。

3.2.2 unparkSuccessor(Node)

  此方法用于唤醒等待队列中下一个线程。下面是源码:

 1 private void unparkSuccessor(Node node) {
 2     //这里,node一般为当前线程所在的结点。
 3     int ws = node.waitStatus;
 4     if (ws < 0)//置零当前线程所在的结点状态,允许失败。
 5         compareAndSetWaitStatus(node, ws, 0);
 6 
 7     Node s = node.next;//找到下一个需要唤醒的结点s
 8     if (s == null || s.waitStatus > 0) {//如果为空或已取消
 9         s = null;
10         for (Node t = tail; t != null && t != node; t = t.prev)
11             if (t.waitStatus <= 12="" 13="" 14="" 15="" 16="" 0)="" 从这里可以看出,<="0的结点,都是还有效的结点。" s="t;" }="" if="" (s="" !="null)" locksupport.unpark(s.thread);="" 唤醒="" }<="" pre="">

  这个函数并不复杂。一句话概括:用 unpark() 唤醒等待队列中最前边的那个未放弃线程,这里我们也用 s 来表示吧。此时,再和 acquireQueued() 联系起来,s 被唤醒后,进入 if (p == head && tryAcquire(arg)) 的判断(即使 p!=head 也没关系,它会再进入 shouldParkAfterFailedAcquire() 寻找一个安全点。这里既然 s 已经是等待队列中最前边的那个未放弃线程了,那么通过 shouldParkAfterFailedAcquire() 的调整,s 也必然会跑到 head 的 next 结点,下一次自旋 p==head 就成立啦),然后 s 把自己设置成 head 标杆结点,表示自己已经获取到资源了,acquire() 也返回了!!And then, DO what you WANT!

3.2.3 小结

  release() 是独占模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放了(即 state=0), 它会唤醒等待队列里的其他线程来获取资源。

3.3 acquireShared(int)

  此方法是共享模式下线程获取共享资源的顶层入口。它会获取指定量的资源,获取成功则直接返回,获取失败则进入等待队列,直到获取到资源为止,整个过程忽略中断。下面是 acquireShared() 的源码:

1 public final void acquireShared(int arg) {
2     if (tryAcquireShared(arg) < 0)
3         doAcquireShared(arg);
4 }

  这里 tryAcquireShared() 依然需要自定义同步器去实现。但是 AQS 已经把其返回值的语义定义好了:负值代表获取失败;0 代表获取成功,但没有剩余资源;正数表示获取成功,还有剩余资源,其他线程还可以去获取。所以这里 acquireShared() 的流程就是:

    1. tryAcquireShared() 尝试获取资源,成功则直接返回;
    2. 失败则通过 doAcquireShared() 进入等待队列,直到获取到资源为止才返回。

3.3.1 doAcquireShared(int)

  此方法用于将当前线程加入等待队列尾部休息,直到其他线程释放资源唤醒自己,自己成功拿到相应量的资源后才返回。下面是 doAcquireShared() 的源码:

 1 private void doAcquireShared(int arg) {
 2     final Node node = addWaiter(Node.SHARED);//加入队列尾部
 3     boolean failed = true;//是否成功标志
 4     try {
 5         boolean interrupted = false;//等待过程中是否被中断过的标志
 6         for (;;) {
 7             final Node p = node.predecessor();//前驱
 8             if (p == head) {//如果到head的下一个,因为head是拿到资源的线程,此时node被唤醒,很可能是head用完资源来唤醒自己的
 9                 int r = tryAcquireShared(arg);//尝试获取资源
10                 if (r >= 0) {//成功
11                     setHeadAndPropagate(node, r);//将head指向自己,还有剩余资源可以再唤醒之后的线程
12                     p.next = null; // help GC
13                     if (interrupted)//如果等待过程中被打断过,此时将中断补上。
14                         selfInterrupt();
15                     failed = false;
16                     return;
17                 }
18             }
19             
20             //判断状态,寻找安全点,进入waiting状态,等着被unpark()或interrupt()
21             if (shouldParkAfterFailedAcquire(p, node) &&
22                 parkAndCheckInterrupt())
23                 interrupted = true;
24         }
25     } finally {
26         if (failed)
27             cancelAcquire(node);
28     }
29 }

  有木有觉得跟 acquireQueued() 很相似?对,其实流程并没有太大区别。只不过这里将补中断的 selfInterrupt() 放到 doAcquireShared() 里了,而独占模式是放到 acquireQueued() 之外,其实都一样,不知道 Doug Lea 是怎么想的。

  跟独占模式比,还有一点需要注意的是,这里只有线程是 head.next 时(“老二”),才会去尝试获取资源,有剩余的话还会唤醒之后的队友。那么问题就来了,假如老大用完后释放了 5 个资源,而老二需要 6 个,老三需要 1 个,老四需要 2 个。老大先唤醒老二,老二一看资源不够,他是把资源让给老三呢,还是不让?答案是否定的!老二会继续 park() 等待其他线程释放资源,也更不会去唤醒老三和老四了。独占模式,同一时刻只有一个线程去执行,这样做未尝不可;但共享模式下,多个线程是可以同时执行的,现在因为老二的资源需求量大,而把后面量小的老三和老四也都卡住了。当然,这并不是问题,只是 AQS 保证严格按照入队顺序唤醒罢了(保证公平,但降低了并发)。

3.3.1.1 setHeadAndPropagate(Node, int)

 1 private void setHeadAndPropagate(Node node, int propagate) {
 2     Node h = head; 
 3     setHead(node);//head指向自己
 4      //如果还有剩余量,继续唤醒下一个邻居线程
 5     if (propagate > 0 || h == null || h.waitStatus < 0) {
 6         Node s = node.next;
 7         if (s == null || s.isShared())
 8             doReleaseShared();
 9     }
10 }

  此方法在 setHead() 的基础上多了一步,就是自己苏醒的同时,如果条件符合(比如还有剩余资源),还会去唤醒后继结点,毕竟是共享模式!

  doReleaseShared() 我们留着下一小节的 releaseShared() 里来讲。

3.3.2 小结

  OK,至此,acquireShared() 也要告一段落了。让我们再梳理一下它的流程:

  1. tryAcquireShared() 尝试获取资源,成功则直接返回;
  2. 失败则通过 doAcquireShared() 进入等待队列 park(),直到被 unpark()/interrupt() 并成功获取到资源才返回。整个等待过程也是忽略中断的。

  其实跟 acquire() 的流程大同小异,只不过多了个自己拿到资源后,还会去唤醒后继队友的操作(这才是共享嘛)

3.4 releaseShared()

  上一小节已经把 acquireShared() 说完了,这一小节就来讲讲它的反操作 releaseShared() 吧。此方法是共享模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果成功释放且允许唤醒等待线程,它会唤醒等待队列里的其他线程来获取资源。下面是 releaseShared() 的源码:

1 public final boolean releaseShared(int arg) {
2     if (tryReleaseShared(arg)) {//尝试释放资源
3         doReleaseShared();//唤醒后继结点
4         return true;
5     }
6     return false;
7 }

  此方法的流程也比较简单,一句话:释放掉资源后,唤醒后继。跟独占模式下的 release() 相似,但有一点稍微需要注意:独占模式下的 tryRelease() 在完全释放掉资源(state=0)后,才会返回 true 去唤醒其他线程,这主要是基于独占下可重入的考量;而共享模式下的 releaseShared() 则没有这种要求,共享模式实质就是控制一定量的线程并发执行,那么拥有资源的线程在释放掉部分资源时就可以唤醒后继等待结点。例如,资源总量是 13,A(5)和 B(7)分别获取到资源并发运行,C(4)来时只剩 1 个资源就需要等待。A 在运行过程中释放掉 2 个资源量,然后 tryReleaseShared(2) 返回 true 唤醒 C,C 一看只有 3 个仍不够继续等待;随后 B 又释放 2 个,tryReleaseShared(2) 返回 true 唤醒 C,C 一看有 5 个够自己用了,然后 C 就可以跟 A 和 B 一起运行。而 ReentrantReadWriteLock 读锁的 tryReleaseShared() 只有在完全释放掉资源(state=0)才返回 true,所以自定义同步器可以根据需要决定 tryReleaseShared() 的返回值。

3.4.1 doReleaseShared()

  此方法主要用于唤醒后继。下面是它的源码:

 1 private void doReleaseShared() {
 2     for (;;) {
 3         Node h = head;
 4         if (h != null && h != tail) {
 5             int ws = h.waitStatus;
 6             if (ws == Node.SIGNAL) {
 7                 if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
 8                     continue;
 9                 unparkSuccessor(h);//唤醒后继
10             }
11             else if (ws == 0 &&
12                      !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
13                 continue;
14         }
15         if (h == head)// head发生变化
16             break;
17     }
18 }

3.5 小结

  本节我们详解了独占和共享两种模式下获取 - 释放资源 (acquire-release、acquireShared-releaseShared) 的源码,相信大家都有一定认识了。值得注意的是,acquire()和 acquireSahred()两种方法下,线程在等待队列中都是忽略中断的。AQS 也支持响应中断的,acquireInterruptibly()/acquireSharedInterruptibly()即是,这里相应的源码跟 acquire()和 acquireSahred()差不多,这里就不再详解了。

四、简单应用

  通过前边几个章节的学习,相信大家已经基本理解 AQS 的原理了。这里再将 “框架” 一节中的一段话复制过来:

  不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队 / 唤醒出队等),AQS 已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:

  • isHeldExclusively():该线程是否正在独占资源。只有用到 condition 才需要去实现它。
  • tryAcquire(int):独占方式。尝试获取资源,成功则返回 true,失败则返回 false。
  • tryRelease(int):独占方式。尝试释放资源,成功则返回 true,失败则返回 false。
  • tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0 表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
  • tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回 true,否则返回 false。

  OK,下面我们就以 AQS 源码里的 Mutex 为例,讲一下 AQS 的简单应用。

4.1 Mutex(互斥锁)

  Mutex 是一个不可重入的互斥锁实现。锁资源(AQS 里的 state)只有两种状态:0 表示未锁定,1 表示锁定。下边是 Mutex 的核心源码:

 1 class Mutex implements Lock, java.io.Serializable {
 2     // 自定义同步器
 3     private static class Sync extends AbstractQueuedSynchronizer {
 4         // 判断是否锁定状态
 5         protected boolean isHeldExclusively() {
 6             return getState() == 1;
 7         }
 8 
 9         // 尝试获取资源,立即返回。成功则返回true,否则false。
10         public boolean tryAcquire(int acquires) {
11             assert acquires == 1; // 这里限定只能为1个量
12             if (compareAndSetState(0, 1)) {//state为0才设置为1,不可重入!
13                 setExclusiveOwnerThread(Thread.currentThread());//设置为当前线程独占资源
14                 return true;
15             }
16             return false;
17         }
18 
19         // 尝试释放资源,立即返回。成功则为true,否则false。
20         protected boolean tryRelease(int releases) {
21             assert releases == 1; // 限定为1个量
22             if (getState() == 0)//既然来释放,那肯定就是已占有状态了。只是为了保险,多层判断!
23                 throw new IllegalMonitorStateException();
24             setExclusiveOwnerThread(null);
25             setState(0);//释放资源,放弃占有状态
26             return true;
27         }
28     }
29 
30     // 真正同步类的实现都依赖继承于AQS的自定义同步器!
31     private final Sync sync = new Sync();
32 
33     //lock<-->acquire。两者语义一样:获取资源,即便等待,直到成功才返回。
34     public void lock() {
35         sync.acquire(1);
36     }
37 
38     //tryLock<-->tryAcquire。两者语义一样:尝试获取资源,要求立即返回。成功则为true,失败则为false。
39     public boolean tryLock() {
40         return sync.tryAcquire(1);
41     }
42 
43     //unlock<-->release。两者语文一样:释放资源。
44     public void unlock() {
45         sync.release(1);
46     }
47 
48     //锁是否占有状态
49     public boolean isLocked() {
50         return sync.isHeldExclusively();
51     }
52 }

  同步类在实现时一般都将自定义同步器(sync)定义为内部类,供自己使用;而同步类自己(Mutex)则实现某个接口,对外服务。当然,接口的实现要直接依赖 sync,它们在语义上也存在某种对应关系!!而 sync 只用实现资源 state 的获取 - 释放方式 tryAcquire-tryRelelase,至于线程的排队、等待、唤醒等,上层的 AQS 都已经实现好了,我们不用关心。

  除了 Mutex,ReentrantLock/CountDownLatch/Semphore 这些同步类的实现方式都差不多,不同的地方就在获取 - 释放资源的方式 tryAcquire-tryRelelase。掌握了这点,AQS 的核心便被攻破了!

  OK,至此,整个 AQS 的讲解也要落下帷幕了。希望本文能够对学习 Java 并发编程的同学有所借鉴,中间写的有不对的地方,也欢迎讨论和指正~

-------------本文结束感谢您的阅读-------------
Dean Wang wechat